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The Single-Cell Revolution

• Cells are the basic unit of living organisms

• Recent technological breakthroughs allow
the molecular characterization of cells

• Describe cell population with high
dimensional molecular features
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Cell biology goes genome-wide

• Investigate shapes, locations,
interactions, functions of cell types

• Classify cells into distinct cell types

• Account for the between-cell variability
and heterogeneities

[1]
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Single-Cell from a statistician’s perspective

From 10X Genomics
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An unprecedented challenge

• Genomics was precursor for data representation and visualization

Publication cells tissue Seq. protocol clusters

Cadwell et al. (2016) 46 visual cortex Smart-seq2 2

Tasic et al. (2016) 1,679 visual cortex SMARTer 49

Macosko et al. (2015) 44,808 retina Drop-seq 39

10x Genomics 1,306,127 brain cells 10x Gen.Chrom. 39

• Dimension reduction is mandatory for any analysis (clustering, visualization, Regulatory
networks inference, etc)
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High-dimensional count data

xij = expression of gene j in cell i

Xn×p =

 xij


1 . . . . . . . . . . . . p︸ ︷︷ ︸

genes

1
...

n

 cells

• High dimension: n grows but � p & Big Data: n and p grow

• Count data with ove-rdispersion and excess of zeros
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Beyond Linear methods

• Linear methods like PCA are robust but badly shaped for complex geometries

• High-dim. datas are characterized by multiscale properties (local / global structures)

• Non-Linear projection methods aim at preserving local characteristics of distances

• Many proposed methods such as LargeVis, tSNE, UMAP

from [3]
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Stochastic Neighbor Embedding (SNE) [4]

• (X1, . . . ,Xn) are the points in the high-dimensional space Rp,

• Consider a similarity between points:

pi |j =
exp(−‖Xi − Xj‖2/2σ2

i )∑
6̀=i exp(−‖X` − Xj‖2/2σ2

` )

• Further symmetrized
pij = (pi |j + pj |i )/2N

• Hyper-parameter σi locally smooths the data, to be tuned

• Linked to the regularity of the target manifold
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tSNE and Student / Cauchy kernels

• Consider (Z1, . . . ,Zn) are points in the low-dimensional space R2

• Consider a similarity between points in the new representation:

qi |j =
exp(−‖Zi − Zj‖2)∑
6̀=i exp(−‖Z` − Zj‖2)

• Robustify this kernel by using Student(1) kernels (ie Cauchy)

qi |j =
(1 + ‖Zi − Zj‖2)−1∑
6̀=i (1 + ‖Zi − Z`‖2)−1
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Optimizing tSNE by Gradient descent

• Minimize the KL between p and q to find Z ∈ R2 such that:

C (Z ) =
∑
ij

KL(pij , qij)

[
∂C (Z )

∂Z

]
i

=
∑
j

(pij − qij)(Zi − Zj)

• Gradient update (adaptive learning rate η)

Z (t) = Z (t−1) + η
∂C (Z )

∂Z
+ α(t)(Z (t−1) − Z (t−2))

• α(t) momentum to speed up and improve convergence

• Initialization Z
(0)
i ∼ N (0, δI ), δ small.
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Uniform Manifold Approximation and Projection [3]

∀(i , j) ∈ [n]2, pj |i = exp

(
−
‖Xi − Xj‖2

2 − ρi
σi

)
with ρi = minj 6=i ‖Xi − Xj‖2. Let us define

pij = pj |i + pi |j − pj |ipi |j

and:

∀(i , j) ∈ [n]2, qij =
(

1 + a‖Xi − Xj‖2b
2

)−1

UMAP solves the following problem:

min
Z∈Rn×d

−
∑
i<j

pij log qij + (1− pij) log(1− qij)

13 / 42



Outline

1. Single-Cell Genomics and Biology

2. Presentation of Neighbor Embedding Methods

3. Empirical properties of tSNE

4. First steps in the definition of the graph coupling strategy

5. Prior and Posterior distributions for graph coupling

6. Open questions and research challenges

14 / 42



tSNE on single cell Gene Expression data [2]
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tSNE does not account for between-cluster distance
50 points

200 points

What about random noise ?
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Catching Complex Geometries
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Properties of t-SNE

• Good at preserving local distances (intra-cluster variance)

• Not so good for global representation (inter-cluster variance)

• Good at creating clusters of points that are close, but bad at positioning clusters wrt
each other

• Does not handle well high dimensional data (preliminary PCA and feature selection)

• Sensistive to the calibration of the hyperparameter (smoothing)

• Reproducibility of results due to stochastic optimization

→ What are the statistical / probabilistic foundations of Stochastic Neighbor Embedding ?
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Hidden Graph to structure observations

• Consider W the adjacency matrix of a hidden random graph

• The graph Laplacian operator is the map L such that for (i , j) ∈ [n]2:

L(W )ij =

 −Wij if i 6= j∑
k∈[n] Wik otherwise .

• L = L(W ) has the following property:

∀X ∈ Rn×p,
∑
i ,j

Wij‖Xi − Xj‖2 = tr(XTLX ).

• In a first step, consider a graph with one connected component
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Conditional distribution of X on a graph WX

• Consider a Matrix Normal model with row and column dependencies

X |WX ∼MN
(

0, L−1
X , Σ−1

)
,

• L−1
X between-cell correlation, Σ−1 between-genes correlation.

• The conditional density relates to the Gaussian kernel

k(Xi − Xj) = exp

(
−1

2
‖Xi − Xj‖2

Σ

)
,

• Which can be generalized to translation invariant kernels:

P(X |WX ) ∝
∏

(i ,j)∈[n]2

k(Xi − Xj)
WX ,ij .
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Conditional distribution of Z on a graph WZ

• Consider that the low-dimensional representation is also structured according to a graph

Z |WZ ∼MN
(

0, L−1
Z , Iq

)
,

• Consider the Gaussian kernel for Z

k(Zi − Zj) = exp

(
−1

2
‖Zi − Zj‖2

Iq

)
,

• Conditional distribution of Z |WZ :

P(Z |WZ ) ∝
∏

(i ,j)∈[n]2

k(Zi − Zj)
WZ ,ij
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Embedding with Graph Coupling

• Consider two hidden graphs WX and WZ

• Couple WX with WZ in a probabilistic way

• Match their posterior distributions

PX = P(WX | X )

QZ = P(WZ | X ;Z )

• Z becomes a parameter to be estimated

Probabilistic Coupling
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Graph Coupling with Z as a parameter

• Consider the cross entropy between posteriors

H
(
PX ,QZ

)
= −EWX∼PX

(
logP(WZ = WX | X ;Z )

)
• Find the best low-dimensional representation such that the two graphs match

Z (X ) = arg min
Z

{
H
(
PX ,QZ

)}
• Connection with the KL between posteriors

KL
(
PX ,QZ

)
= H

(
PX ,QZ

)
−H

(
PX ,PX

)
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First Outline

Done...

• Consider two hidden random graphs WX ,WZ

• Define a conditional model X |WX ,Z |WZ

• Consider pairwise similarity distributions (Pairwise Markov Random Field)

• Find Z by matching the posteriors using a cross entropy criterion

...to be done :

• Define/Construct the priors for WX ,WZ

• Deduce/Induce the posteriors for WX ,WZ

• Carefully inspect the case with more than one connected component
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Construction of conjugate priors for hidden graphs

• Consider a prior distribution for the hidden graph in the general form (α = 0 later on)

PP(W ;π) ∝ Ck(W )α ΩP(W )
∏

(i ,j)∈[n]2

π
Wij

ij

• P stands for a family of priors s.t:

P ΩP(W ) Prior for W

B Bernoulli
∏

ij 1Wij≤1 B
(

πij
1+πij

)
D Unitary Fixed degree

∏
i 1Wi+=1 M

(
1, πiπi+

)
E Fixed Number of edges

∏
ij(Wij !)

−1 M
(
n, π

π++

)
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Deducing the limit posterior for hidden graphs

• We show that the posterior distribution PP(W | X ;π, k) converge to (details later)

P Approximate Posterior for W

B Bernoulli B
(

πijkij
1+πijkij

)
D Unitary Fixed degree M

(
1, [πk]i

[πk]i+

)
E Fixed Number of edges M

(
n, πk

[πk]++

)

• πijkij = πijk(Xi − Xj) is the posterior strength of edges (normalized or not)
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Mixing Prior distributions for coupling

• Priors for WX and WZ induce the approximate posteriors

PPX
(WX | X ;πX , kX ) = PPX

PPZ
(WZ | X ;πZ , kZ ) = QPZ

• Match the approximate posteriors

H
(
PPX ,QPZ

)
= −EWX∼PPX

{
logPPZ

(WZ = WX ;πZ , kZ )

}
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Model based Stochastic Neighbor Embedding

• Choosing PX = PZ = D:

HD,D = −
∑
i 6=j

PD
ij logQD

ij .

PD
ij =

πijk(Xi − Xj)∑n
`=1 πi`k(Xi − X`)

, QD
ij =

πijk(Zi − Zj)∑n
`=1 πi`k(Zi − Z`)

.

• We defined the generative model for SNE !

• Can be generalized to symmetric graphs
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Model based UMAP [3]

• Choose PX = PZ = B and define the symmetrized graph

W̃X = 1WX +WT
X ≥1

• By independence of the symmetrized edges,

W̃X ,ij ∼ B
(
P̃B
ij

)
with P̃B

ij = PB
ij + PB

ji − PB
ij P

B
ji

• Coupling W̃X and WZ gives:

H
B̃,B

= −2
∑
i<j

P̃B
ij logQB

ij +
(

1− P̃B
ij

)
log
(

1− QB
ij

)
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General Approach for Graph Coupling

Algorithm Input Similarity Latent Similarity Loss Function

SNE PD
ij =

kx (Xi−Xj )∑
` kx (Xi−X`)

QD
ij =

kz (Zi−Zj )∑
` kz (Zi−Z`)

−
∑

i 6=j P
D
ij logQ

D
ij

Sym-SNE P
D
ij = PD

ij + PD
ji QE

ij =
kz (Zi−Zj )∑
`,t kz (Z`−Zt )

−
∑

i<j P
D
ij logQ

E
ij

LargeVis P
D
ij = PD

ij + PD
ji QB

ij =
kz (Zi−Zj )

1+kz (Zi−Zj )
−
∑

i<j P
D
ij logQ

B
ij +

(
2− P

D
ij

)
log(1− QB

ij )

UMAP P̃B
ij = PB

ij + PB
ji − PB

ij P
B
ji QB

ij =
kz (Zi−Zj )

1+kz (Zi−Zj )
−
∑

i<j P̃
B
ij logQ

B
ij +

(
1− P̃B

ij

)
log(1− QB

ij )
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Second Outline

Done...

• Consider two hidden random graphs WX ,WZ

• Define a conditional model X |WX ,Z |WZ

• Consider pairwise similarity distributions (Pairwise Markov Random Field)

• Find Z by matching the posteriors using a cross entropy criterion

• Define/Construct the priors for WX ,WZ

• Deduce/Induce the posteriors for WX ,WZ

...to be done :

• Carefully inspect the case with more than one connected component
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The model is not fully integrable

• Suppose the graph has R connected components of size nr = Card(Cr ).

• By the spectral theorem L = UΛUT where U = (U1, ...,Un) is orthogonal

∀r ∈ {1, . . . ,R}, λr = 0 and Ur =
(
n
−1/2
r 1i∈Cr

)
i∈[n]

• (U1, ...,UR) is an orthogonal basis of ker(L)

• The projection of X on ker(L) is the empirical mean by connected components

XM,i =
1

nr

∑
r∈[R]

1i∈Cr

∑
`∈Cr

X`


• P(X |WX ) is not fully integrable on Rn×p but only on ker(L)⊥

X − XM : relative position of points within CC
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Diffuse Conditional and Integrability

• To overcome the integrability issue, we introduce a distribution on CC means

P(X |WX ) = P(XM |WX )× P(X − XM |WX )

• We choose a distribution on CC means such that:

XM |Θ ∼MN
(

0,
[
εU1:RΘUT

1:R

]−1
,Σ

)
• When ε→ 0, the position of CCs is not informative anymore
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Completed model and posterior computations

• Posterior computations are complex wrt to CC membership

• PP(WX | X ;π, k) can not be computed easily

• Taking ε→ 0 compensates for the uninformative diffuse conditional on XM

• This full model at the limit allows to retrieve an approximate tractable posterior
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Kernel calibration and Perplexity

• tSNE strongly depends on the calibration of the kernel

k(Xi − Xj ;σi ) = exp

(
− 1

2σi
‖Xi − Xj‖2

Σ

)
,

• σi should adjust to local densities (neighborhood of point i)

• In practice, the method is tuned by fixing a given amount of entropy

H(pi ) = −
n∑

j=1

pij log2 pij

• Find σi such that 2H(pi ) = perp (user defined)

• Interpreted as the smoothed effective number of neighbors.
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Visual inspection of the influence of σ[2]
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Back to the coupling strategy

• Maximizing the probability of coupling by minimizing the KL

KL
(
PX ,QZ

)
= H

(
PX ,QZ

)
−H

(
PX ,PX

)
• H

(
PX ,PX

)
is exactly the perplexity parameter

• Constrained coupling with a given degree of entropy

Z (X ) = arg min
Z ,H
(
PX ,PX

)
=Perp

{
KL
(
PX ,QZ

)}

= arg min
Z ,H
(
PX ,PX

)
=Perp

{
H
(
PX ,QZ

)
− Perp

}
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Perspectives

• The method is based on a preliminary smoothing of the data to retrieve a graph with
controlled complexity
• This is related (how ?) to manifold learning and density estimation on manifolds
• The output Ẑ (X ) strongly depends on this preliminary step

• Can we generalize the approach by matching arbitrary priors ( power-law )
• Introduce clustering and spatial information in the framework

• How graph coupling could be restated in the RKHS ?

A Probabilistic Graph Coupling View of Dimension Reduction, van Assel, H. and Espinasse,
T. and Chiquet, J. and Picard, F., NEURIPS 2022
https://arxiv.org/pdf/2201.13053.pdf

41 / 42

https://arxiv.org/pdf/2201.13053.pdf


References

[1] J. N. Campbell, E. Z. Macosko, H. Fenselau, T. H. Pers, A. Lyubetskaya, D. Tenen, M. Goldman,
A. M. Verstegen, J. M. Resch, S. A. McCarroll, E. D. Rosen, B. B. Lowell, and L. T. Tsai. A
molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci.,
20(3):484–496, Mar 2017.

[2] Dmitry Kobak and Philipp Berens. The art of using t-sne for single-cell transcriptomics. bioRxiv,
2018.

[3] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation and projection for
dimension reduction. Arxiv, (1802.03426):1–63, 2018.

[4] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

42 / 42


	Single-Cell Genomics and Biology
	Presentation of Neighbor Embedding Methods
	Empirical properties of tSNE
	First steps in the definition of the graph coupling strategy
	Prior and Posterior distributions for graph coupling
	Open questions and research challenges
	References

