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Introduction

⋆ Our framework is the following:

M :
{

X =
∏d

i=1 Xi → Y
x 7→ y = M(x1, . . . , xd) with

▶ M expensive to evaluate,
▶ high dimension d ≫ 1.

⋆ We aim to:
▶ define a r (new) inputs, r ≤ d to build a surrogate for M,
▶ exploit gradient information when available (e.g., automatic

differentiation, adjoint method).

⋆ More precisely, we seek for a decomposition of the form:

M(x1, . . . , xd) ≈ f ◦g(x) = f (g1(x1, . . . , xd), . . . , gr (x1, . . . , xd))

with r ≤ d .
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Introduction

Illustration: resonance frequency of a bridge
Parametrized eigenvalue problem

M(x) = min
v∈RN

vT K (x)v
vT Mv

▶ K (x): stiffness matrix, M: mass matrix
▶ v ∈ RN , N = 960 nodes in the finite element mesh
▶ the Young modulus field, E (x) = exp

(∑d
i=1 xi

√
σiψi

)
, with

ψi : Ω → R and σi the i-th leading eigenfunctions and
eigenvalues of kernel c(s, t) =

√
5 exp(−∥s − t∥2

2/20), is
parametrized by x ∼ Nd(0, Id), d = 32.

For this example, it is easy to compute model gradient
∇M(x) = (∂x1M(x), · · · , ∂xd M(x)):

∂xi M(x) =
v(x)T (∂xi K (x)

)
v(x)

v(x)T Mv(x) , with v(x) = argmin
v∈RN

vT K (x)v
vT Mv ·
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Introduction

sin(x1)
g(x) = x1︸ ︷︷ ︸

linear in first canonical coordinate

sin(x1 + x2)
g(x) = x1 + x2︸ ︷︷ ︸

linear

sin(x1 + x2
2 )

g(x) = x1 + x2
2︸ ︷︷ ︸

nonlinear

sin(x2
1 + x2

2 )
g(x) = x2

1 + x2
2︸ ︷︷ ︸

nonlinear
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Introduction

Uncertainty quantification framework

Uncertain input parameters are modeled by a probability
distribution µ on X , from experts’ knowledge or from observations.

E.g., if the inputs are independent, this probability distribution is
characterized by its marginals: µ(dx) =

∏d
i=1 µi(dxi).

Approximation error is measured as

E
(
∥M(X) − f ◦ g(X)∥Y

2
)
,

with some specific norm on Y.
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Introduction

Joint work with

Introduction

Total Sobol’ indices from an approximation point of view

Gradient-based linear dimension reduction
Framework
Poincaré-based upper bound
Link with total Sobol’ indices
A numerical example

Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g
Adaptive procedure based on {X(i),M(X(i)),∇M(X(i))}N

i=1?
Numerical illustrations

Conclusion, perspectives

Thanks
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Total Sobol’ indices from an approximation point of view
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Total Sobol’ indices from an approximation point of view

In the following,

M :
{

X = Rd → Y = Rp

x 7→ y = M(x1, . . . , xd)

For p = 1 (scalar output) and u ⊂ {1, . . . , d}, one defines the total
Sobol’ index for M associated to u as:

Stot
u = 1 − Var [E (Y |X−u)]

Var[Y ] = E [Var (Y |X−u)]
Var[Y ]

with X−u = (Xi , i /∈ u) (see, e.g., Da Veiga et al. [2021]).

We then have the following equality Hart and Gremaud [2018]:

Stot
u = ∥Y − E (Y |X−u) ∥2

∥Y − E (Y ) ∥2 ,

with ∥Y − E (Y |X−u) ∥2 = E
(
|M(X) − E (Y |X−u) |2

)
.
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Total Sobol’ indices from an approximation point of view

From
Stot

u = ∥Y − E (Y |X−u) ∥2

∥Y − E (Y ) ∥2 ,

with ∥Y − E (Y |X−u) ∥2 = E
(
|M(X) − E (Y |X−u) |2

)
, we deduce:

Su
tot ≈ 0 ⇔ M(X) ≈ f (X−u)

⇔ Xu is useless to “explain” Y = M(X)

Note that if µ(dx) =
∏d

i=1 µi(dxi) then

Su
tot =

∑
v⊆{1,...,d} , u∩v ̸=∅

Sv and

Su
tot ≈ 0 ⇔ M(X) ≈ M(xu,X−u) for

∏
i∈u µi -almost all xu

⇔ Xu is useless to “explain” Y = M(X)
⇔ Xu "can be fixed" to any value in the model
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Total Sobol’ indices from an approximation point of view

A natural extension to the vector-valued case:

Stot
u = E(∥M(X) − E(M(X)|X−u)∥Y

2)
E(∥M(X) − E(M(X))∥Y 2) ,

with Y = Rp endowed with a hilbertian norm ∥ · ∥Y (see Lamboni
et al. [2011], Gamboa et al. [2013], Zahm et al. [2020]).
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Gradient-based linear dimension reduction
Framework

Gradient based linear dimension reduction Constantine and Diaz
[2017], Zahm et al. [2020]
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Gradient-based linear dimension reduction
Framework

Framework:
x ∈ Rd 7→ M(x1, . . ., xd) ∈ Y

with Y = Rp endowed with a Hilbertian norm ∥ · ∥Y .

One aims at approximating M by a ridge function (a function
which is constant along a subspace). More specifically, one seeks
for r ≤ d and A ∈ Rr×d such that:

M(x) ≈ f (A x) with f : Rr → Y ,

or equivalently for r ≤ d and a rank-r projector Pr ∈ Rd×d such
that:

M(x) ≈ h(Pr x) with h : Rd → Y .
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Gradient-based linear dimension reduction
Framework

We assume X ∼ µ = N (m,Σ).
Controlled approximation problem Given ε ≥ 0, find r , h and a
rank-r projector Pr such that

E
(
∥M(X) − h(Pr X)∥Y

2) ≤ ε.

Procedure:
1. derive an upper bound for the error

∥M − h ◦ Pr ∥ ≤ R(h,Pr )

2. fix r and solve
min
h,Pr

R(h,Pr )

3. increase r until
min
h,Pr

R(h,Pr ) ≤ ε

Note that Pr is not restricted to be a projector onto the canonical
coordinates.
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Gradient-based linear dimension reduction
Poincaré-based upper bound

Derivation of the upper bound
For any projector Pr ,

∥M − Eµ(M|σ(Pr ))∥ = min
h

∥M − h ◦ Pr ∥.

From Poincaré type inequalities, we can deduce that for
M : Rd → Y smooth vector-valued and for any projector Pr ,

∥M − Eµ(M|σ(Pr ))∥ ≤
√

trace
(
H(Id − Pr )Σ(Id − Pr )T )

with matrix H ∈ Rd×d defined by

H =
∫

(∇M)∗(∇M)dµ

where {
∇M(x) : Rd → Rp Jacobian of M at x
∇M(x)∗ is the adjoint of ∇M(x)
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Gradient-based linear dimension reduction
Poincaré-based upper bound

What is the matrix H ?

H =
∫

(∇M)∗(∇M)dµ ∈ Rd×d

▶ Vector-valued case: Y = Rp with ∥ · ∥Y such that
∥v∥2

Y = vT RYv for some SPD matrix RY ∈ Rp×p. Then

H =
∫

(∇M)T RY (∇M) dµ

with

∇M =


∂M1
∂x1

. . . ∂M1
∂xd... . . . ...

∂Mp
∂x1

. . .
∂Mp
∂xd
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Gradient-based linear dimension reduction
Poincaré-based upper bound

▶ Scalar-valued case: Y = R with ∥ · ∥Y = | · |, then

H =
∫

(∇M)(∇M)T dµ

with

∇M =


∂M
∂x1...
∂M
∂xd


⇝⇝ Active-Subspace method Constantine and Diaz [2017]

18/ 49



Gradient-based linear dimension reduction
Poincaré-based upper bound

Minimizing the upper bound
Let (vi , λi) be the i-th generalized eigenpair of (H,Σ−1):

Hvi = λiΣ−1vi .

One has λ1 ≥ · ≥ λi ≥ · ≥ λd and

min
Pr

√
trace

(
H(Id − Pr )Σ(Id − Pr )T ) =

√√√√ d∑
i=r+1

λi

A solution is the Σ−1-orthogonal proj. Pr onto span{v1, . . . , vr },
Pr =

(∑r
i=1 vivT

i

)
Σ−1, and

▶ a fast decay in λi ensures
√∑d

i=r+1 λi ≤ ε for r = r(ε) ≪ d ,
▶ H provides a test that reveals the low-effective dimension.
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Gradient-based linear dimension reduction
Link with total Sobol’ indices

Let’s come back to the upper bound, namely,

∥M − Eµ(M|σ(Pr ))∥ ≤
√

trace
(
H(Id − Pr )Σ(Id − Pr )T ).

Choosing Y = Rp and Pr as the projector that extracts the
coordinates of X indexed by u, we get:

Stot
u = ∥M − Eµ(M|σ(Id − Pr ))∥2

∥M − Eµ(M)∥2

thus

Stot
u ≤

trace
(
ΣPT

r HPr
)

∥M − Eµ(M)∥2

=
∑

i∈u Var(Xi)Hi ,i
∥M − Eµ(M)∥2 ·

See, e.g., Sobol’ & Kucherenko, 2009 and Lamboni et al., 2013 for
similar results in the case p = 1 (scalar output).
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Gradient-based linear dimension reduction
A numerical example

A numerical example
Diffusion problem on Ω = [0, 1]2:

{
∇ · κ∇u = 0 in Ω

u = x + y on ∂Ω
▶ Random diffusion field κ, log-normal distribution.
▶ After finite element discretization:

x = log(κ) ∈ R3252 ∼ µ = N (0,Σ)

(a) mesh, 3252 elements (b) log. diffusion field (c) solution

1. Scenario 1 M : x 7→ u ∈ Y ⊂ H1(Ω), p = 1691 (number of nodes
in the mesh for FEM);

2. Scenario 2 M : x 7→ u|Ωs ∈ Y ⊂ H1(Ωs), p = 168;
3. Scenario 3 M : x 7→ (u|s1 , u|s2) ∈ Y = R2 (canonical norm).

21/ 49



Gradient-based linear dimension reduction
A numerical example

Modes v1, v2, . . .
mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

K
-L

m
o
d
es

S
ce
n
ar
io

1
S
ce
n
a
ri
o
2

S
ce
n
a
ri
o
3

Im(Pr ) = span{v1, v2, . . . , vr }
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Gradient-based linear dimension reduction
A numerical example

Approximation of the conditional expectation assuming H is known

Eµ(M|σ(Pr )) ≈ F̂r : x 7→
1
M

M∑
k=1

M(Pr x + (Id − Pr )Z(k)), Z(k) iid∼ µ

0 100 200 300
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

bound(K-L proj.)
bound(optimal proj.)
true error, M = 1

true error, M = 5

true error, M = 20

M : x 7→ u
0 100 200 300

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M : x 7→ u|Ωs

0 100 200 300
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M : x 7→ (u|s1 , u|s2)
∥M − F̂r ∥ = function(r)

We can show that

E
(

∥M − F̂r ∥2
)

≤ (1 + M−1) trace(Σ(Id − PT
r )H(Id − Pr ))

23/ 49



Gradient-based linear dimension reduction
A numerical example

Approximation of H to get the projector

H ≈ Ĥ =
1
K

K∑
k=1

(∇M(X(k)))∗(∇M(X(k))), X(k) iid∼ µ

0 100 200 300
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

K = 5

K = 10

K = 30

K = 100

K = 400

K = 1000

M : x 7→ u
0 100 200 300

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M : x 7→ u|Ωs

0 100 200 300
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M : x 7→ (u|s1 , u|s2)√
trace(Σ(Id − P̂T

r )Ĥ(Id − P̂r )) = function(r) (dashed curves)√
trace(Σ(Id − P̂T

r )H(Id − P̂r )) = function(r) (solid curves)

Notice that rank(Ĥ) ≤ K max1≤k≤K rank
(

∇M(X(k))
)

≤ K dim(Y)
(see also Zahm et al. [2022])
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Gradient-based linear dimension reduction
A numerical example

Beyond Gaussian uncertainty

Let dµ(x) ∼ exp
(

− V (x) − Ψ(x)
)

dx . Assume

1. supp(µ) convex,
2. (Bakry–Émery theorem) V a convex potential with

∇2V (x) ⪰ Γ, with Γ SPD matrix,

3. (Holley–Stroock perturbation lemma) Ψ bounded with
exp(sup Ψ − inf Ψ) ≤ κ .

Then µ satisfies the subspace Poincaré inequality (Zahm et al. [2022]):
∥M − E[M(X)|Pr

T X]∥2 ≤ κ trace[Σ(Id − Pr
T )H(Id − Pr ))]

for any smooth function M and any projector Pr .

▶ Gaussian mixtures,
▶ uniform measures on compact & convex sets
▶ any measure such that dµ(x) ≥ α > 0 on compact & convex sets.
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Extension to nonlinear dimension reduction

Extension to nonlinear dimension reduction Bigoni et al. [2022]
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Extension to nonlinear dimension reduction

M :
{

X ⊂ Rd → R
x 7→ y = M(x1, . . . , xd)

M(x1, . . . , xd) ≈ f ◦ g(x) = f (g1(x1, . . . , xd), . . . , gr (x1, . . . , xd)) ,
with the feature map g is not necessarily linear.

We propose, for any r ≤ d , a two-step procedure.

▶ Step 1, construction of the feature map g :
solve min

g∈Gr
J(g1, . . . , gr ) with J a gradient-based cost function.

▶ Step 2, construction of the profile fucntion f :

solve min
f ∈Fr

E
[(

M(X) − f ◦ g(X)
)2]

.
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Choice of the cost function J

Note that, if M(x1, . . . , xd) = f ◦ g(x), then

∇M(x) = ∇g(x)T︸ ︷︷ ︸
∈Rd×r

∇f (g(x))︸ ︷︷ ︸
∈Rr

⇒ ∇M(x) ∈ range(∇g(x)T ).

A natural choice for J is then

J(g) := E
[∥∥∇M(X) − Πrange(∇g(X)T )∇M(X)

∥∥2]
.

We have proven M = f ◦ g ⇒ J(g) = 0. Question a) Is the
reciprocal true?
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Question a): is the reciprocal ⇑ true? yes!

Proposition:
Assume M ∈ C1(X ;R) and g ∈ Gr ⊂ C1(X ;Rr ).
Assume that the level-sets of g are such that

g−1({z}) = {x ∈ X : g(x) = z},

are pathwise-connected for any z ∈ Rr . Then

J(g) = 0 ⇒ ∃ f such that M = f ◦ g

Are g ’s level sets pathwise-connected?
yes! no
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Examples of feature maps g : X → R with X convex and with
smoothly pathwise connected level-sets:

Affine feature map Any function g(x) = Ax + b with A ∈ Rm×d

and b ∈ Rm;

Feature map following from a C1-diffeomorphism Any function
g(x) = (ϕ1(x), . . . , ϕm(x)) where ϕi(x) is the i-th component of
ϕ(x), with ϕ : X → X a C1-diffeomorphism;

Polynomial feature map Any polynomial function on X = Rd such
that for all z ∈ g(X ), the zeros of the polynomial x 7→ g(x) − z are
pathwise-connected.

Computing the number of connected
components (i.e., the zeroth Betti number) of an algebraic set like
{x : g(x) − z} is a difficult question, commonly encountered in
algebraic geometry.
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Question b): does J(g) ≈ 0 implies M ≈ f ◦ g? yes!

Denote by C(Z ) the Poincaré constant of a random vector Z ,
that is, the smallest constant such that

Var(h(Z )) ≤ C(Z )E
[∥∥∇h(Z )

∥∥2]
holds for any smooth function h : supp(Z ) → R.
Proposition:
Assume Gr ⊂ C1(X;Rr ) and rank

(
∇g(x)T

)
= r ∀ g ∈ Gr ,

∀ x ∈ X . Assume

C(X|Gr ) := sup
g∈Gr

sup
z∈g(X )

C(X|g(X) = z) < ∞.

Then for any g ∈ Gr , there exists a profile f : Rr → R such that

E
[(

M(X) − f ◦ g(X)
)2] ≤ C(X|Gr ) J(g).
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Example: if Gr = {x 7→ UT x : U ∈ Rd×r orth. columns} and if
X ∼ N (0, Id), then

C(X|Gr ) = 1

Although assuming C(X|Gr ) < ∞ is usual, e.g., in the analysis of
Markov semigroups or in molecular dynamics, proving it remains an
open challenge in more general settings.
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Question c): how to minimize g 7→ J(g)? We seek for g solving

min
g=(g1,...,gr )∈Gr

J(g) = E
[∥∥∇M(X) − Πrange(∇g(X)T )∇M(X)

∥∥2]
with Gr = Gr = span{Φ1, . . . ,ΦK }r .

It is equivalent to seek for g solving

max
G∈R#G×r

R(G) = E
[
trace(GT H(X)G)(GT Σ(X)G)−1

]
where

H(x) = ∇Φ(x)
(
∇M(x)∇M(x)T )∇Φ(x)T ,

Σ(x) = ∇Φ(x)∇Φ(x)T , with Φ(x) = (Φ1(x), . . . ,ΦK (x)).

Maximization is solved with a quasi-Newton algorithm.

For linear feature maps, g(x) = A x, our procedure coincides with
active subspace method.
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Extension to nonlinear dimension reduction
Adaptive procedure based on {X(i), M(X(i)), ∇M(X(i))}N

i=1?

Adaptive construction of g from {X(i),M(X(i)),∇M(X(i))}N
i=1

Empirical cost
We first replace R(G) by its empirical counterpart:

R̂N(G) = 1
N

N∑
i=1

trace(GT H(X(i))G)(GT Σ(X(i))G)−1.

For any 1 ≤ r ≤ d , we adapt the complexity of Gr = Gr to the
sample size N.

Matching Pursuit
We use a state-of-the-art Migliorati [2015, 2019] reduced-set
matching pursuit algorithm on downward-closed polynomial spaces
to build g .

Cross Validation
is used to know when to stop the iterations (before it overfits).
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Extension to nonlinear dimension reduction
Adaptive procedure based on {X(i), M(X(i)), ∇M(X(i))}N

i=1?

More precisely, to adapt the complexity of G with respect to the sample
size N, one uses the following tools:

Downward closed polynomial spaces
G = PΛ[Rd ] = span{xν1

1 . . . xνd
d , ν ∈ Λ}

where Λ ⊂ Nd is a downward closed set, that is:

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ

Matching Pursuit
Λk+1 = Λk ∪ {νk+1}

νk+1 ∈ argmax
ν∈ReducedMargin(Λk)

|∂νR̂N(G∗
k )|

where G∗
k is the minimizer of R̂N(·) over Λk .

Cross Validation
To know when to stop the iterations (before it overfits).
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Extension to nonlinear dimension reduction
Adaptive procedure based on {X(i), M(X(i)), ∇M(X(i))}N

i=1?

Once g is computed, how to construct f ?

min
f ∈Fr

1
N

N∑
i=1

(
M(X(i))−f ◦g(X(i))

)2+
∥∥∇M(X(i)) − ∇f ◦ g(X(i))

∥∥2︸ ︷︷ ︸
recycle the gradients

As for G, we adapt the complexity of Fr = F r using reduced-set
matching pursuit algorithm on downward-closed polynomial spaces.

Benchmark algorithm (without dimension reduction):

min
v∈V

1
N

N∑
i=1

(
M(X(i)) − v(X(i))

)2 +
∥∥∇M(X(i)) − ∇v(X(i))

∥∥2︸ ︷︷ ︸
recycle the gradients
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Extension to nonlinear dimension reduction
Numerical illustrations

Illustration: isotropic function

M(x) = cos
(√

x2
1 + . . .+ x2

d
)

µ = N (0, Id)
x ∈ R20

N = 100
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Extension to nonlinear dimension reduction
Numerical illustrations

Illustration: Borehole function

M(x) = 2πTM(HM−Hℓ)
ln(r/rω)

(
1+ 2LTM

ln(r/rω )rω2Kω
+ TM

Tℓ

) ,



x1 = rω ∼ N (0.1, 3 · 10−4)
x2 = r ∼ log N (7.71, 1.0112)
x3 = TM ∼ U(63 070, 115 600)
x4 = HM ∼ U(990, 1110)
x5 = Tℓ ∼ U(63.1, 116)
x6 = Hℓ ∼ U(700, 820)
x7 = L ∼ U(1120, 1 680)
x8 = Kω ∼ U(9 855, 12 045)
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Continuous lines: mean squared error E[(M(X) − f ◦ g(X))2], Dashed lines: cost
function J(g). The width of the shaded region corresponds to the standard deviation
over 20 experiments. 38/ 49



Extension to nonlinear dimension reduction
Numerical illustrations

Illustration: resonance frequency of a bridge

Parametrized eigenvalue problem

M(x) = min
v∈RN

vT K (x)v
vT Mv

▶ K (x): stiffness matrix
▶ M: mass matrix
▶ v ∈ RN , N = 960 nodes in the finite element mesh
▶ x ∈ Rd : Young modulus field (d = 32 KL modes)
▶ N = 100 (20 trials)

For this example, it is easy to compute model gradient
∇M(x) = (∂x1M(x), · · · , ∂xd M(x)):

∂xi M(x) =
v(x)T (∂xi K (x)

)
v(x)

v(x)T Mv(x) , with v(x) = argmin
v∈RN

vT K (x)v
vT Mv ·
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Extension to nonlinear dimension reduction
Numerical illustrations

Resonance frequency of a bridge. Four realizations of the Young modulus
field X (color of the elements) and the associated resonance mode v(X)
(displacement of the mesh).
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Extension to nonlinear dimension reduction
Numerical illustrations

Results:
r = 1 r = 2 r = 3 r = 4 r = 6 r = 8 r = 16 r = 32

Mean×1012 1.6 1.5 1.1 1.2 1.3 1.5 1.6 1.4
Std×1012 0.80 0.69 0.22 0.24 0.28 0.83 0.39 0.43

#ΛK 148 (±64) 129 (±45) 91 (±21) 80 (±23) 64 (±16) 57 (±9) 51 (±1) 32 (±0)
#ΓL 5 (±1) 8 (±1) 11 (±1) 15 (±3) 24 (±7) 44 (±24) 133 (±102) 102 (±70)

Mean and standard deviation of mean squared error E[(M(X) − f ◦ g(X))2] over 20
experiments, where g and f are constructed adaptively with N = 100 samples. Mean
squared error is computed on a (fixed) validation set of size 1000. The last two lines
give mean(± std) of the cardinality of #ΛK and #ΓL, which represent the complexity
of g and f , respectively.
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Extension to nonlinear dimension reduction
Numerical illustrations

Comparison with nonlinear (NL) kernel supervised PCA and NL
kernel dimension reduction.

Y =
(

M(X)
∇M(X)

)
∈ R1+d .

Kernel supervised PCA Barshan et al. [2011] aims to maximize the
dependence between GT Φ(X) and Y measured with the
Hilbert-Schmidt norm of the cross-covariance operator restricted to
an arbitrary reproducing kernel Hilbert space (RKHS).
Kernel dimension reduction Fukumizu et al. [2009] aims to
minimize the dependence between Y and Y|GT Φ(X) measured
with the Hilbert-Schmidt norm of the conditional covariance
operator restricted to some RKHS.
In our experiments, we used squared exponential kernels for both
κX and κY.
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Extension to nonlinear dimension reduction
Numerical illustrations
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Isotropic function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X), M(X)). Red lines: function
g(x) 7→ f ◦ g(x) with either N = 50 (top row) or N = 500 (bottom row). Here, f is a
univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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Extension to nonlinear dimension reduction
Numerical illustrations
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Borehole function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X), M(X)). Red lines: function
g(x) 7→ f ◦ g(x) with either N = 30 (top row) or N = 300 (bottom row). Here, f is a
univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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Conclusion, perspectives

Conclusion
▶ In this talk, we presented a trip around global sensitivity

analysis (via total Sobol’ indices) and (non)linear dimension
reduction.

▶ We proposed a two-step algorithm to build the approximation
M(x) ≈ f ◦ g(x) adaptively with respect to the input/output
sample. This algorithme takes into account gradient
information.

Perspectives
▶ It would be interesting to propose an optimal (or at least a

clever) sampling procedure.
▶ Beyond polynomial approximation?
▶ Although assuming C(X|Gr ) < ∞ is usual, proving it remains

an open challenge. Is it possible to choose the approximation
class Gr such that PX|Gr is the push-forward measure of the
standard normal distribution through a Lipschitz map.

▶ . . .
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